Skip to main content

Plotting

Visualization tools for calibration analysis.

Full API Reference

For complete API documentation with all parameters, return types, and detailed docstrings, see the Sphinx API Reference.

Global Calibration Curves

from mcgrad import plotting

# Plot global calibration curve
fig = plotting.plot_global_calibration_curve(
data=df,
score_col='prediction',
label_col='label',
sample_weight_col='weights', # optional
)

fig.show()

Multicalibration Analysis

Visualize calibration across segments:

from mcgrad import plotting

# Plot calibration curves for each segment
fig = plotting.plot_calibration_curve_by_segment(
data=df,
group_var='country',
score_col='prediction',
label_col='label',
)

fig.show()

Segment Calibration Errors

Visualize calibration errors across multiple segments:

from mcgrad import metrics, plotting

# Create a MulticalibrationError object
mce = metrics.MulticalibrationError(
df=df,
label_column='label',
score_column='prediction',
categorical_segment_columns=['country', 'content_type'],
)

# Plot segment calibration errors
fig = plotting.plot_segment_calibration_errors(
mce=mce,
quantity='segments_ecce_sigma',
)

fig.show()

See the source code for more visualization options.